Tetrahedron Letters No. 4, pp 359 - 362, 1977. Pergamon Press. Printed in Great Britain.

(-) CAMPHENE-8-CARBOXYLIC ACID: DISTORTION INVOLVING THE <u>GEM</u>. DIMETHYL GROUP OBSERVED BY X-RAY DIFFRACTION

Paul C. Moews and James R. Knox Biological Sciences Group and Institute of Materials Science

> Wyman R. Vaughan Department of Chemistry University of Connecticut, Storrs, CT 06268, USA

(Received in U.S.A. 22 October 1976; received in U.K. for publication 28 December 1976)

We wish to report an analysis of x-ray diffraction data tending to support an argument advanced by one of us¹ on chemical grounds that almost exclusive <u>exo</u>-methyl migration in the Nametkin portion of camphene (<u>1</u>) racemization (via the camphenehydro ion) may be attributable to a strain-induced (C-10 - C-5-<u>endo</u>-H) distortion of the dihedral (torsion) angles α and β (Fig. 1). The diffraction data are reported for (-) camphene-8-carboxylic acid (<u>2</u>)² with the absolute configuration illustrated³. The angles α and β are found to differ significantly from the 60° suggested by Dreiding models.

Camphene (1) R = H; (-) camphene-8-carboxylic acid (2) $R = CO_2H$

X-ray diffraction data for <u>2</u> were collected on a capillary-enclosed single crystal of <u>2</u> at 5°C on a Picker Corporation FACS-I four-circle diffractometer using CuK α radiation. Carbon and oxygen atoms were located by direct phasing methods⁴ and the structure refined anisotropically using the 1382 reflections with $F \ge 4\sigma(F)$. Hydrogen atom positions were determined from difference Fourier maps; the final residual⁵ was 4.8 per cent.

<u>Crystal Data</u>: $C_{11}H_{16}O_2$; MW = 180.2; F(000) = 196; triclinic; <u>a</u> = 7.429 <u>+</u> 0.002 Å, <u>b</u> = 12.020 <u>+</u> 0.003 Å, <u>c</u> = 6.081 <u>+</u> 0.002 Å, <u>a</u> = 98.06 <u>+</u> 0.02°, <u>b</u> = 104.86 <u>+</u> 0.03°, <u>y</u> = 88.63 <u>+</u> 0.02°; Volume = 519.6 Å³, <u>d</u>_c = 1.15 g cm⁻³ for Z = 2; <u>d</u>_m = 1.13 g cm⁻³ by flotation. No extinctions. Space group: P1(No. 1, C_1^1).

The structure contains two molecules in the asymmetric unit which form a hydrogen-bonded dimer through their carboxyl groups (Fig. 2). The camphene skeleton (atoms C(1) - C(10)) is very similar in the two independent molecules; a least-squares superposition of the two molecules leads to a root-mean-square deviation of only 0.05 Å in the position of chemically equivalent atoms, with the largest difference between two corresponding atoms being 0.07 Å. Molecule A is shown in Figure 1. Torsion angles⁶ about the C(2) - C(3) bond are given in

Fig. 1 Molecule A of compound 2 projected along C(3)-C(2) bond.

Table 1. The first two torsion angles in the Table (α and β , Fig. 1) deviate from 60° by more than seven times their calculated error (0.5°). Further confidence in the reality of this deviation comes from the fact that for each dihedral angle (α or β), the direction of the twist is the same in <u>both</u> of the crystallographically independent molecules.

Fig. 2. The two independent molecules in the crystallographic cell projected along c.

Table 1. Torsion angles (deg.) about the C(2)-C(3) bond

	<u>Molecule A</u>	<u>Molecule B</u>
C(8)C(2) - C(3)C(9)	-66.7	-63.5
C(8)C(2) - C(3)C(10)	55.0	56.4
C(1)C(2) - C(3)C(9)	111.4	114.3
C(1)C(2) - C(3)C(10)	-126.9	-125.9
C(1)C(2) - C(3)C(4)	-4.0	-1.6
C(8)C(2) - C(3)C(4)	177.9	179.3

These crystallographic results reveal a significant distortion in the direction proposed¹ and clearly imply an appreciable energetic favoring of <u>exo</u>-methyl migration. This distortion brings C-10 closer to its ultimate position after complete rearrangement and aligns the σ -

orbital of C-9/C-3 more nearly parallel with the p-orbital of the trigonal carbon (C-2). Presumably the camphenehydro ion approximates the ground statefor both <u>exo</u>- and <u>endo</u>-methyl migration; but the orbital alignments may be irrelevant to the energies of the two transition states except insofar as the reason for these alignments gives clues to factors (eg. C-10/C-5 repulsion and probable increase therein during C-10 migration) which may be more important to transition state than to ground state geometry.

REFERENCES AND NOTES

- 1. W. R. Vaughan and D. M. Teegarden, J. Amer. Chem. Soc., 96, 4902 (1974).
- W. R. Vaughan, J. Wolinsky, R. R. Dueltgen, S. Grey and F. S. Seichter, <u>J. Org. Chem.</u>, <u>35</u>, 400 (1970).
- 3. The use of <u>2</u> instead of <u>1</u> in this preliminary study was dictated by the volatility and x-ray sensitivity of <u>1</u> and is justified by the general character of the Nametkin-type rearrangement in all camphene derivatives as well as simpler norbornane derivatives. See J. A. Berson, J. H. Hammons, A. W. McRowe, R. G. Bergman, A. Remanic and D. Houston, <u>J. Amer. Chem. Soc</u>., <u>89</u>, 2590 (1967) and references cited therein. We are now engaged in examining (1) itself.
- 4. Program MULTAN. G. Germain, P. Main and M. M. Woolfson, Acta Crystallogr., A27, 368 (1971).
- 5. Residual = $\Sigma ||F_0| |F_C||/\Sigma|F_0|$, where F_0 and F_c are the observed and calculated structure factors amplitudes.
- 6. Zero angle is defined with front and rear bond superposed in projection down middle bond. Angle is positive if right hand rotation at either bond is required for their superposition.